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2012: Alan Turing Year 

Enigma Turing Machines Turing Intelligence Test 

Artificial Intelligence: 
Two “devices” that respond 
the same way should be 
considered as equivalent 

Complexity Theory: 
Classification of Problems according to 
the amount of computation resources 
required to solve them. 
 
The famous ($1 million) question: 

P = NP ? 

Cryptography: 

Alan Turing scientific contributions 



Context 

We are evolving in a changing economical/social/environmental context 
– “Zero-risk”, “open” society 
– Increasing complexity of systems (systems of systems), ubiquity of software 
– Evolution of the market: from products to capabilities 

 
Engineering responses and challenges: 

– Integration of Engineering Disciplines 
– Model Based Design 
– Use of Probabilistic Risk Assessment for 

• Safety Assessment (Certification…) 
• Operational Decision (Risk Informed Policy) 
• Contractual Commitment (System Availability) 

 
 
 

 
 

 
 

EPR Flamanville 



PSA/PRA: Current Situation 

Event Trees Fault Trees 

Rather well mastered PSA technology: 
• Mature software 
• Large models (typically 2000 Basic Events in Nuclear PSA models) 
• Data bases of experience feedback 

 
Issues: 
• Distance between systems and models of these systems 

‒ Even small changes in system specifications may require a complete review of PSA models 
‒ Difficult integration with other system engineering disciplines 

• Limitations of modeling formalisms 
‒ No dynamicity, strong assumptions on statistical independence of Basic Events,… 
‒ Lack of reuse, difficulty of knowledge capitalization 
‒ Systemic effects (human factors, emergence) are hard if not impossible to take into account 

• Complexity of assessments 



Because of repeated events, it is not possible to calculate reliability indicators straight from Fault 
Trees. An intermediate form has to be calculated. 
 
 
 
 
 
 
Most efficient algorithms proposed so-far: 
 
 
 
 
 
 
 
 
 

Assessment Algorithms 

Minimal Cutsets Sum of Disjoint Products 

Top-Down (RSAT – RiskSpectrum) 
(XFTA) 

Bottom-up ZBDD 
(FTREX – Cafta) 

BDD 
(Aralia – Riskman) 

• approximation 
• efficient 

• exact results 
• much more costly 
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Reliability Indicators Fault Tree 

For large PSA models, only unwarranted approximations can be calculated. They consists 
in keeping only failure scenarios whose probability is over a predefined threshold.  



Probabilistic Assessment Uncertainty Principle 

Turing Valiant 

Theorem: 
The calculation of a warranted approximation of the top event probability is 
provably intractable (under assumptions that are strongly believed to hold)! 

and others… 

Practical Consequence 1: 
The failure scenarios we are considering are those with few (less than 10) basic components 
failed. We are looking at small deviations from regular operations, probably not at 
accidents where a large number of systems are failed, e.g. Fukushima. 

Practical Consequence 2: 
Refining a model (decomposing failure scenarios into finer ones) may decrease the accuracy 
of the assessment. At the limit, if scenarios are too much decomposed, they will all fall 
under the threshold. As a consequence, one will conclude that there is no risk. 

PSA uncertainty principle: 
We cannot have both a detailed model and accurate/complete calculations.   
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Asking More to Models 

Challenge/research direction: 
Design mathematical concepts, algorithms and tools to explore failure scenarios with 
more than a few components failed. 

 
PSA models are made of two parts: 
• A description of the “logic” of failure. 
• Probability distributions for Basic Events. 

We could probably keep the logic and use differently probability distributions. 

Typical probability of scenarios as predicted by our models 

Number of failed components 

Minimal Cutsets 

Actual probability of scenarios? Accidents? 

Independence assumption hides systemic effects 
Regular operations? 
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The Right Level of Abstraction 

A model is designed to capture/study one aspect of the 
system under study/design. 
It should be at the right level of abstraction. 
E.g. a map abstracts away many irrelevant details and is 
useful because it does so. 

Achieving the right level of abstraction is easy to say, but 
difficult to achieve as illustrated by Nuclear PSA models. 
 
An illustrative and representative example (US). 
What has been designed: 

• ~2 500 Basic Events PSA model 
What has been calculated: 

• ~100 000 Minimal Cutsets 
• 95% of the Core Damage Frequency with less than 5% 

of the Basic Events, 100% with 25% 
In a word, 75% of the model is “useless”! 



Categories of Models 

Challenge/research direction: 
Many possibly very different models are undistinguishable by observation means, i.e. 
results of virtual experiments (typically, calculation of failure scenarios). They are 
equivalent in the Turing test sense. 
Equivalent models form a category. 
Design mathematical concepts, algorithms and tools to determine the most representative 
(simplest?) model of a category. 

MCS calculation 

Minimal Cutsets 

Original Model 

Representative Model 

? 



Abstraction 

Complex systems need to be described by multi-scale 
models 

• The composition of models of subsystems is often 
too big to be handled 

• Models of subsystems are often heterogeneous… 
and designed by suppliers 

Challenge/research direction: 
Design mathematical concepts, algorithms and tools 
to abstract the model of subsystems into the model 
of the system and vice-versa 

models for subsystems 



Open-PSA Initiative 

Statement of Purpose: 
 
“We hope to provide an open and transparent public forum to disseminate information, 
independently review new ideas, and spread the word. We want to emphasize an 
openness which will lead to methods and software with higher quality, lead to better 
understanding of PSA models, encourage peer review, and allow the transportability of 
models and methods.”  
 
from www.open-psa.org 



Standard Representation Formats 

Two major trends: 
• Models are more and more used as a contractual basis 
• A high quality assurance is demanded on models 

As a consequence, models must be: 
• Peer-reviewed 
• Tool independent 

 

<define-fault-tree name="FT1" > 
    <define-gate name="top" > 
        <or> 
            <gate name="G" /> 
            <basic-event name="C" /> 
        </or> 
    </define-gate> 
    <define-gate name="G" > 
        <and> 
            <basic-event name="A" /> 
            <basic-event name="B" /> 
        </and>  
    </define-gate> 
</define-fault-tree> 

The Open-PSA Standard Representation Format 
for Fault Trees and Event Trees  

Challenge/research direction: 
Define standard representation formats, 
with all the necessary constructs, with a clear 
and sound semantics 
 

Version 3 of the OpenPSA standard under redaction 
• Simplifications 
• Block Diagrams 
• Multi-phase Markov Chains with Rewards 



 The XFTA Project 

Provide the community with a Fault Tree solver 
• Open-Source (C++) 

– Free of use, even in commercial packages  
• Supporting the Open-PSA Model Exchange Format 
• Implementing State-of-the-Art algorithms 

– Works for coherent and non-coherent models 
• Calculating (reliability) indicators of interest 

– Minimal Cutsets 
– Top Event Probability, Importance Factors 
– Sensitivity Analyses,  Time Dependent Analyses,  Safety Integrity Levels 

 
Experiments (on my laptop) 
 
 
 
 
 
 
Version 1.1 available on my web page at Ecole Polytechnique  
(http://www.lix.polytechnique.fr/~rauzy) 
 
 
 

#gates #BE cutoff #MCS running 
time 

PSA 1 2096 1055 1.0e-12 146831 30s53 

PSA 2 2722 1430 1.0e-12 36717 15s46 



 Probabilistic Risk Assessment 

Models 

Modeling 

Fault Trees, Event Trees, 
Markov Chains, Stochastic 
Petri Nets… 

Improvements 
Certification 

Virtual Experiments 
• Failure Scenarii 
• Reliability Indicators 
 

Issues: 
• Completeness of specifications with respect to safety concerns 
• Distance between system specifications and safety models 
• Size of the models 
• Complexity of virtual experiments 

System Specifications 
(and experience feedback) 



The AltaRica Language 

System Specification Models 

class component 
  state Boolean working (init = true); 
  event failure (delay = exponential(lambda)); 
 transition 
    failure: working -> working := false; 
end 

AltaRica 

Features of the language 
• Formal 
• Event-Based 
• Textual & graphical 
• Multiple assessment tools 

Cecilia OCAS Safety Designer 

More than 10 years of industrial experience 



The AltaRica 3.0 Project 

class Pump 
… 
end 

AltaRica 

compilation to 
Fault Trees 

generation 
of sequences 

Libraries 
patterns 

Guarded Transition Systems 

model checking 
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stochastic simulation reliability 
allocation 

Reliability Data 

SysML 

AADL 

FMEA Petri Nets 

Dynamic FaultTrees 

GUI for modeling 
GUI for simulation Version & Configuration  

Management System 

compilation to 
Markov Chains 
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