
Probabilistic Risk Assessment Software:
A Computer Scientist Perspective

Antoine Rauzy

Chair Blériot-Fabre* - Ecole Centrale de Paris
&

Ecole Polytechnique
FRANCE

 *sponsored by SAFRAN

2012: Alan Turing Year

Enigma Turing Machines Turing Intelligence Test

Artificial Intelligence:
Two “devices” that respond
the same way should be
considered as equivalent

Complexity Theory:
Classification of Problems according to
the amount of computation resources
required to solve them.

The famous ($1 million) question:

P = NP ?

Cryptography:

Alan Turing scientific contributions

Context

We are evolving in a changing economical/social/environmental context
– “Zero-risk”, “open” society
– Increasing complexity of systems (systems of systems), ubiquity of software
– Evolution of the market: from products to capabilities

Engineering responses and challenges:

– Integration of Engineering Disciplines
– Model Based Design
– Use of Probabilistic Risk Assessment for

• Safety Assessment (Certification…)
• Operational Decision (Risk Informed Policy)
• Contractual Commitment (System Availability)

EPR Flamanville

PSA/PRA: Current Situation

Event Trees Fault Trees

Rather well mastered PSA technology:
• Mature software
• Large models (typically 2000 Basic Events in Nuclear PSA models)
• Data bases of experience feedback

Issues:
• Distance between systems and models of these systems

‒ Even small changes in system specifications may require a complete review of PSA models
‒ Difficult integration with other system engineering disciplines

• Limitations of modeling formalisms
‒ No dynamicity, strong assumptions on statistical independence of Basic Events,…
‒ Lack of reuse, difficulty of knowledge capitalization
‒ Systemic effects (human factors, emergence) are hard if not impossible to take into account

• Complexity of assessments

Because of repeated events, it is not possible to calculate reliability indicators straight from Fault
Trees. An intermediate form has to be calculated.

Most efficient algorithms proposed so-far:

Assessment Algorithms

Minimal Cutsets Sum of Disjoint Products

Top-Down (RSAT – RiskSpectrum)
(XFTA)

Bottom-up ZBDD
(FTREX – Cafta)

BDD
(Aralia – Riskman)

• approximation
• efficient

• exact results
• much more costly

Probabilité de l'ER

0.0000 2000.0000 4000.0000 6000.0000 8000.0000

2.0000e-1

3.0000e-1

4.0000e-1

5.0000e-1

6.0000e-1

7.0000e-1

8.0000e-1

9.0000e-1

1.0000e+0

Pr[STop event]

Reliability Indicators Fault Tree

For large PSA models, only unwarranted approximations can be calculated. They consists
in keeping only failure scenarios whose probability is over a predefined threshold.

Probabilistic Assessment Uncertainty Principle

Turing Valiant

Theorem:
The calculation of a warranted approximation of the top event probability is
provably intractable (under assumptions that are strongly believed to hold)!

and others…

Practical Consequence 1:
The failure scenarios we are considering are those with few (less than 10) basic components
failed. We are looking at small deviations from regular operations, probably not at
accidents where a large number of systems are failed, e.g. Fukushima.

Practical Consequence 2:
Refining a model (decomposing failure scenarios into finer ones) may decrease the accuracy
of the assessment. At the limit, if scenarios are too much decomposed, they will all fall
under the threshold. As a consequence, one will conclude that there is no risk.

PSA uncertainty principle:
We cannot have both a detailed model and accurate/complete calculations.

Probabilistic Assessment Uncertainty Principle

Turing Valiant

Theorem:
The calculation of a warranted approximation of the top event probability is
provably intractable (under assumptions that are strongly believed to hold)!

and others…

Practical Consequence 1:
The failure scenarios we are considering are those with few (less than 10) basic components
failed. We are looking at small deviations from regular operations, probably not at
accidents where a large number of systems are failed, e.g. Fukushima.

Practical Consequence 2:
Refining a model (decomposing failure scenarios into finer ones) may decrease the accuracy
of the assessment. At the limit, if scenarios are too much decomposed, they will all fall
under the threshold. As a consequence, one will conclude that there is no risk.

PSA uncertainty principle:
We cannot have both a detailed model and accurate/complete calculations.

Asking More to Models

Challenge/research direction:
Design mathematical concepts, algorithms and tools to explore failure scenarios with
more than a few components failed.

PSA models are made of two parts:
• A description of the “logic” of failure.
• Probability distributions for Basic Events.

We could probably keep the logic and use differently probability distributions.

Typical probability of scenarios as predicted by our models

Number of failed components

Minimal Cutsets

Actual probability of scenarios? Accidents?

Independence assumption hides systemic effects
Regular operations?

Probabilistic Assessment Uncertainty Principle

Turing Valiant

Theorem:
The calculation of a warranted approximation of the top event probability is
provably intractable (under assumptions that are strongly believed to hold)!

and others…

Practical Consequence 1:
The failure scenarios we are considering are those with few (less than 10) basic components
failed. We are looking at small deviations from regular operations, probably not at
accidents where a large number of systems are failed, e.g. Fukushima.

Practical Consequence 2:
Refining a model (decomposing failure scenarios into finer ones) may decrease the accuracy
of the assessment. At the limit, if scenarios are too much decomposed, they will all fall
under the threshold. As a consequence, one will conclude that there is no risk.

PSA uncertainty principle:
We cannot have both a detailed model and accurate/complete calculations.

The Right Level of Abstraction

A model is designed to capture/study one aspect of the
system under study/design.
It should be at the right level of abstraction.
E.g. a map abstracts away many irrelevant details and is
useful because it does so.

Achieving the right level of abstraction is easy to say, but
difficult to achieve as illustrated by Nuclear PSA models.

An illustrative and representative example (US).
What has been designed:

• ~2 500 Basic Events PSA model
What has been calculated:

• ~100 000 Minimal Cutsets
• 95% of the Core Damage Frequency with less than 5%

of the Basic Events, 100% with 25%
In a word, 75% of the model is “useless”!

Categories of Models

Challenge/research direction:
Many possibly very different models are undistinguishable by observation means, i.e.
results of virtual experiments (typically, calculation of failure scenarios). They are
equivalent in the Turing test sense.
Equivalent models form a category.
Design mathematical concepts, algorithms and tools to determine the most representative
(simplest?) model of a category.

MCS calculation

Minimal Cutsets

Original Model

Representative Model

?

Abstraction

Complex systems need to be described by multi-scale
models

• The composition of models of subsystems is often
too big to be handled

• Models of subsystems are often heterogeneous…
and designed by suppliers

Challenge/research direction:
Design mathematical concepts, algorithms and tools
to abstract the model of subsystems into the model
of the system and vice-versa

models for subsystems

Open-PSA Initiative

Statement of Purpose:

“We hope to provide an open and transparent public forum to disseminate information,
independently review new ideas, and spread the word. We want to emphasize an
openness which will lead to methods and software with higher quality, lead to better
understanding of PSA models, encourage peer review, and allow the transportability of
models and methods.”

from www.open-psa.org

Standard Representation Formats

Two major trends:
• Models are more and more used as a contractual basis
• A high quality assurance is demanded on models

As a consequence, models must be:
• Peer-reviewed
• Tool independent

<define-fault-tree name="FT1" >
 <define-gate name="top" >
 <or>
 <gate name="G" />
 <basic-event name="C" />
 </or>
 </define-gate>
 <define-gate name="G" >
 <and>
 <basic-event name="A" />
 <basic-event name="B" />
 </and>
 </define-gate>
</define-fault-tree>

The Open-PSA Standard Representation Format
for Fault Trees and Event Trees

Challenge/research direction:
Define standard representation formats,
with all the necessary constructs, with a clear
and sound semantics

Version 3 of the OpenPSA standard under redaction
• Simplifications
• Block Diagrams
• Multi-phase Markov Chains with Rewards

 The XFTA Project

Provide the community with a Fault Tree solver
• Open-Source (C++)

– Free of use, even in commercial packages
• Supporting the Open-PSA Model Exchange Format
• Implementing State-of-the-Art algorithms

– Works for coherent and non-coherent models
• Calculating (reliability) indicators of interest

– Minimal Cutsets
– Top Event Probability, Importance Factors
– Sensitivity Analyses, Time Dependent Analyses, Safety Integrity Levels

Experiments (on my laptop)

Version 1.1 available on my web page at Ecole Polytechnique
(http://www.lix.polytechnique.fr/~rauzy)

#gates #BE cutoff #MCS running
time

PSA 1 2096 1055 1.0e-12 146831 30s53

PSA 2 2722 1430 1.0e-12 36717 15s46

 Probabilistic Risk Assessment

Models

Modeling

Fault Trees, Event Trees,
Markov Chains, Stochastic
Petri Nets…

Improvements
Certification

Virtual Experiments
• Failure Scenarii
• Reliability Indicators

Issues:
• Completeness of specifications with respect to safety concerns
• Distance between system specifications and safety models
• Size of the models
• Complexity of virtual experiments

System Specifications
(and experience feedback)

The AltaRica Language

System Specification Models

class component
 state Boolean working (init = true);
 event failure (delay = exponential(lambda));
 transition
 failure: working -> working := false;
end

AltaRica

Features of the language
• Formal
• Event-Based
• Textual & graphical
• Multiple assessment tools

Cecilia OCAS Safety Designer

More than 10 years of industrial experience

The AltaRica 3.0 Project

class Pump
…
end

AltaRica

compilation to
Fault Trees

generation
of sequences

Libraries
patterns

Guarded Transition Systems

model checking
Probabilité de l'ER

0.0000 2000.0000 4000.0000 6000.0000 8000.0000

2.0000e-1

3.0000e-1

4.0000e-1

5.0000e-1

6.0000e-1

7.0000e-1

8.0000e-1

9.0000e-1

1.0000e+0

Pr[STop event]

stochastic simulation reliability
allocation

Reliability Data

SysML

AADL

FMEA Petri Nets

Dynamic FaultTrees

GUI for modeling
GUI for simulation Version & Configuration

Management System

compilation to
Markov Chains

	Probabilistic Risk Assessment Software:�A Computer Scientist Perspective��Antoine Rauzy�Chair Blériot-Fabre* - Ecole Centrale de Paris�&�Ecole Polytechnique�FRANCE
	2012: Alan Turing Year
	Context
	PSA/PRA: Current Situation
	Assessment Algorithms
	Probabilistic Assessment Uncertainty Principle
	Probabilistic Assessment Uncertainty Principle
	Asking More to Models
	Probabilistic Assessment Uncertainty Principle
	The Right Level of Abstraction
	Categories of Models
	Abstraction
	Open-PSA Initiative
	Standard Representation Formats
	 The XFTA Project
	 Probabilistic Risk Assessment
	The AltaRica Language
	The AltaRica 3.0 Project

